메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유성민 (가천대학교) 황은주 (가천대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제34권 제2호
발행연도
2021.4
수록면
239 - 254 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
논문에서는 2개의 혼합된 t-분포(TP-T)의 오차과정을 따르는 이질적 자기회귀 (HAR) 모형을 이용하여, 한국 코로나 (COVID-19) 확진자 수 데이터에 대한 시계열 분석, 즉 추정과 예측에 대하여 연구한다. HAR-TP-T 시계열 모형을 고려하여 HAR 모형의 계수 뿐 아니라 TP-T 오차과정의 모수를 추정하고자 단계별 추정법을 제안한다. 본 연구에서 제안하고 있는 단계별 추정법은, HAR 계수 추정을 위해서는 통상적 최소제곱추정법을 채택하고, TP-T 모수 추정을 위해서는 최대우도추정법을 이용한다. 단계별 추정법에 대한 모의실험을 수행하여, 성능이 우수함을 입증한다. 한국 코로나 확진자 수에 대한 실증적 데이터 분석에서, HAR 모형에서의 차수 p = 2, 3, 4에 대해, 모형의 평균제곱오차가 최소가 되도록 하는 최적화 시간간격(optimal lag)을 포함하여, 여러가지 시간간격을 고려한 HAR-TP-T 모형의 모수 추정값을 계산한다. 제안된 단계별 추정 방법과 기존의 MLE만의 방법을 추정 결과를 제시함으로 함께 비교한다. 본 연구에서 제안하고 있는 추정은 두 가지의 오차 측면, 즉 HAR 모형의 평균제곱오차와 잔차분포에 대한 밀도함수 추정의 평균제곱오차, 두 측면에서 모두 우수함을 입증하였다. 나아가, 추정 결과를 활용한 코로나 확진자 수 예측을 수행하였고, 예측정확도의 한 측도로서 mean absolute percentage error (MAPE)를 계산하여 0.0953%의 매우 작은 오차값을 얻었다. 본 연구에서 선택한 최적화 시간간격을 고려한 HAR-TP-T 시계열 모형 및 단계별 추정 방법은, 정확한 한국 코로나 확진자 수 예측 성능을 제공한다고 할 수 있다.

목차

Abstract
1. 서론
2. 이질적 자기회귀모형(Heterogeneous autoregressive model)
3. Two-piece scale mixture of normal (TP-SMN) 분포
4. Heterogeneous autoregressive model with two-piece t distributed errors (HAR-TP-T) 모형
5. 모의 실험
6. 한국 COVID-19 누적 확진자 수 실증 분석
7. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0