메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제29권 제7호
발행연도
2016.12
수록면
1,213 - 1,229 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근에 Cho와 Shin (2016)가 변동성 예측 모형으로 유명한 HAR (Corsi, 2009) 모형보다 단위근을 부과한 IHAR 모형이 더 우수하다는 것이 보고하였다. 금융시계열에 비대칭 변동성이 존재한다는 것은 널리 알려져 있다. 이 논문에서는 IHAR 모형에 레버리지를 고려한 LIHAR 모형을 제안한다. LIHAR 모형과 IHAR 모형 기존의 HAR 모형, LHAR 모형과의 예측력 비교를 통해 LIHAR 모형의 우수성을 보인다. 모형을 평가하기 위해 Oxford-Man 라이브러리 20개의 실현변동성 데이터를 이용하였다. 특히 DJIA, S&P 500, Russell 2000, KOSPI Composite 데이터는 다양한 분석을 하였다. 주가와 같은 금융지수의 변동성에는 장기기억성과 비대칭 변동성이 존재하고, 이런 특징을 LIHAR 모형이 HAR, IHAR, LHAR 모형보다 적절하게 반영하고 있는 것을 확인 하였다. 또한 예측력도 LIHAR 모형이 가장 우수하였다. 금융시계열의 실현변동성에 장기기억성, 비대칭변동성, 비정상성을 모두 반영하여 예측하는 것이 상당한 가치가 있음을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001588446