메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Didit B Nugroho (Universitas Kristen Satya Wacana) Bernadus AA Wicaksono (Universitas Kristen Satya Wacana) Lennox Larwuy (Universitas Kristen Satya Wacana)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제30권 제2호
발행연도
2023.3
수록면
163 - 178 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
GARCH-X(1; 1) model specifies that conditional variance follows an AR(1) process and includes a past exogenous variable. This study proposes a new class from that model by allowing a more general (non-linear) variance function to follow an AR(1) process. The functions applied to the variance equation include exponential, Tukey’s ladder, and Yeo–Johnson transformations. In the framework of normal and student-t distributions for return errors, the empirical analysis focuses on two stock indices data in developed countries (FTSE100 and SP500) over the daily period from January 2000 to December 2020. This study uses 10-minute realized volatility as the exogenous component. The parameters of considered models are estimated using the adaptive random walk metropolis method in the Monte Carlo Markov chain algorithm and implemented in the Matlab program. The 95% highest posterior density intervals show that the three transformations are significant for the GARCHX(1; 1) model. In general, based on the Akaike information criterion, the GARCH-X(1; 1) model that has return errors with student-t distribution and variance transformed by Tukey’s ladder function provides the best data fit. In forecasting value-at-risk with the 95% confidence level, the Christoersen’s independence test suggest that non-linear models is the most suitable for modeling return data, especially model with the Tukey’s ladder transformation.

목차

Abstract
1. Introduction
2. Methodology
3. Applications on real data
4. Conclusions and future works
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001433331