메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제28권 제6호
발행연도
2015.12
수록면
1,047 - 1,061 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
층화표본추출(stratified sampling)은 모집단을 구성하는 층에 대한 정보를 표본설계에 반영함으로써 추정량의 분산을 낮추기 위한 표본추출 방법으로, 표본배분 방안의 선택이 층화표본의 효과를 결정하는데 매우 중요한 요소이다. 전통적인 표본배분 방법으로는 비례배분법(proportional allocation)과 네이만배분법(Neyman alloction)이 주로 사용되는데, 이는 층별 추정량의 분산에 영향을 미치는 요인들을 표본 배분에 반영함으로써 전체 추정량의 분산을 최적화하기 위한 것이다. 이론적으로는 층크기(size of strata)만을 반영하는 비례배분법보다 층별 표준편차(standard deviation)를 함께 고려하는 네이만배분법이 추정량의 분산을 낮추는데 더 효과적임이 알려져 있다. 그러나 층별 표준편차에 대한 사전 정보가 모집단을 잘 반영하지 못하면 네이만배분법의 효과를 기대할 수 없으며, 특히 복수의 관심변수를 조사하는 다목적조사(multi-purpose survey)에서는 각 관심변수들의 층별 표준편차가 서로 다른 양상을 나타내기 때문에 네이만배분법이 적합하지 않다는 주장이 제기되기도 한다. 한편 표본조사에서는 조사단계에서 발생하는 무응답으로 인한 추정량의 편향을 제거하기 위해 응답률 보정 방법이 사용되는데, 이 또한 추정량의 분산에 영향을 미치는 주요한 요인 중에 하나이다. 그러나 전통적인 표본배분 방법은 응답률(response rate)을 감안하지 않기 때문에 층별 응답율에 차이가 크게 나타날 경우 층화표본에 의한 효과가 저하될 수 있다. 이에 본 연구는 층화표본추출에서 층간 응답률의 차이가 추정량의 분산에 미치는 영향을 살펴보고, 층별 응답률 정보를 표본설계에 반영하는 새로운 표본배분 방법을 제안하였다. 모의실험을 통해 확인한 결과 네이만배분법은 당초 표본배분 시에 적용한 층별 표준편차의 구조가 각 층의 응답률 보정과정에서 증가하는 분산을 반영하지 못하기 때문에 층간 응답률의 편차가 커질수록 효율이 저하되는 것으로 나타났다. 반면 층 크기와 층별 응답률을 함께 반영한 배분방법은 비례배분법에 비해 효율이 개선되며, 층간 응답률의 편차가 클수록 그 효과는 커진다. 특히 층별 응답률의 변동계수(coefficient of variance)가 층별 표준편차의 변동계수를 상회하는 경우는 네이만배분법 보다도 효율적인 추정량을 제공함을 확인하였다. 아울러 응답률을 반영한 배분방법은 기존 배분방법에 비해 각 층별 추정량을 보다 안정적으로 추정할 수 있기 때문에 층별 추정을 목적으로 하는 층화표본조사에서는 여타 추정방법보다 더 효과적이다. 층별 응답률에 대한 정보는 관심변수가 다르더라도 추출틀이 유사한 기존 조사의 결과를 활용할 수 있다는 점에서 표준편차에 비해 비교적 정보 수집이 용이한 장점이 있고, 다목적조사에서도 관심변수의 척도(scale)나 개수와 관계없이 적용 가능하기 때문에 활용도가 높을 것으로 생각된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001585894