메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제28권 제1호
발행연도
2015.2
수록면
21 - 33 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
SVM은 높은 수준의 분류 정확도와 유연성을 바탕으로 다양한 분야의 분류분석에서 널리 사용되고 있다. 그러나 집단별 개체수가 상이한 불균형 자료의 분류분석에서 SVM은 다수집단으로 편향되게 분류함수를 추정하므로 소수집단의 분류 정확도가 심각하게 감소하게 된다. 불균형 자료의 분류분석을 위하여 집단별 오분류 비용을 차등 적용하는 가중 L<sub>2</sub>-norm SVM이 개발되었으나, 이는 릿지 형태의 벌칙함수를 사용하므로 분류함수의 추정에서 불필요한 잡음변수의 제거에는 효율적이지 못하다. 따라서 본 논문에서는 라소 형태의 별칙함수를 사용하고 훈련개체의 오분류 비용을 차등적으로 부여함으로서 불균형 자료의 분류분석에서 변수선택의 기능을 지니는 가중 L<sub>1</sub>-norm SVM을 제안하였으며, 모의실험과 실제자료의 분석을 통하여 제안한 방법론의 효율적인 성능과 유용성을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001509272