메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제22권 제2호
발행연도
2020.1
수록면
565 - 574 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
일반적으로 전통적인 분류분석 방법은 소수집단의 개체수가 다수집단의 개체수와 현격한 차이를 보이는 이항 범주형 불균형 자료(imbalanced data)의 분류분석에서 문제를 야기한다. 그것은 다수집단에 편향된 분류함수를 추정하므로서 대부분의 자료를 다수집단으로 분류하여 소수집단의 분류 정확도를 현저히 감소하는 현상이다. 이러한 문제를 효과적으로 해결하기 위하여 본 논문에서는 가우스 혼합 군집모형을 활용하여 불균형 자료의 분류분석을 위한 샘플링 기법을 제안한다. 이 방법은 소수집단에 대해 가우스 혼합분포를 추정하고 이를 기반으로 과대 추출하는 것이 핵심이다. 제안하는 방법을 SMOTE(synthetic minority over-sampling technique), ADASYN (adaptive synthetic sampling)과 같은 기존의 과대 추출 방법들과 다양한 상황 및 실제 예제에서 비교하여 그 우수성을 확인하였다. 특히, 불균형 자료 분석에서 중요하게 다루어지는 소수집단의 분류 정확도 측면에서 제안한 방법은 충분히 좋은 성능을 보였다. 본 연구에서는 이진 분류기로서 서포트 벡터 머신을 분류방법으로 사용하였으며, 전체 정확도, 민감도, 특이도 및 기하평균으로 성능을 평가하였다.

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0