메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장서인 (숙명여자대학교) 여인권 (숙명여자대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제34권 제5호
발행연도
2021.10
수록면
711 - 721 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
이 논문에서는 불균형 자료에 대한 분류 분석에서 불순도지수를 이용하여 임계값을 조정하는 방법에 대해 알아본다. 이항자료에 대한 분류에서는 소수범주를 Positive, 다수범주를 Negative라고 하면, 일반적으로 사용하는 0.5 기준으로 범주를 정하면 불균형 자료에서는 특이도는 높은 반면 민감도는 상대적으로 낮게 나오는 경향이 있다. 소수범주에 속한 개체를 제대로 분류하는 것이 상대적으로 중요한 문제에서는 민감도를 높이는 것이 중요한데 이를 분류기준이 되는 임계값을 조정을 통해 높이는 방법에 대해 알아본다. 기존연구에서는 G-mean이나 F1-score와 같은 측도를 기준으로 임계값을 조정했으나 이 논문에서는 CHAID의 카이제곱통계량, CART의 지니지수, C4.5의 엔트로피를 이용하여 최적임계값을 선택하는 방법을 제안한다. 최적임계값이 여러 개 나올 수 있는 경우 해결방법을 소개하고 불균형 분류 예제로 사용되는 데이터 분석을 통해 0.5를 기준으로?(무엇?)을 때와 비교하여 어떤 개선이 이루어졌는지 등을 분류성능측도로 알아본다.

목차

Abstract
1. 서론
2. 임계값 조정을 통한 분류
3. 임계값 조정 실증분석
4. 결론
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0