메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
유세영 (Northwestern University)
저널정보
한국지식정보기술학회 한국지식정보기술학회 논문지 한국지식정보기술학회 논문지 제16권 제6호
발행연도
2021.12
수록면
1,141 - 1,150 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To find a common bottleneck in Data Transfer Nodes using modern NUMA systems, we need to investigate many components in the system. Even efficient modern data transfer systems suffer from performance degradation when used in high-speed data transfer because of the large amount of process load on the system, especially on the CPU and the storage devices. Many efficient storage systems provide a particular benefit in a specific situation. However, there is no comprehensive study of these protocols. There are proposed techniques to optimize CPU load on data transfer and configure storage systems, such as using different CPU core affinity bindings in their Non-Uniform Memory Access (NUMA) system NVMe-over-Fabrics to avoid CPU bottleneck in high-speed data transfer. Such techniques limit the user processes to specific NUMA nodes to reduce foreign memory access overhead. However, this results from a smaller number of available CPU cores in the NUMA system, which is counter-intuitive to run a large workload accessing multiple storage devices. To evaluate the performance of local file systems in high-speed data transfer and CPU affinity binding in a high-speed data transfer system, we performed an analysis of storage and CPU affinity binding in a 100 Gbps network. We achieved the maximum SSD performance threshold using 32 transfer processes with traditional file transfer while using one process per NVMe with NVMe-over-Fabrics and reduced CPU utilization. We could not find significant evidence that binding processes to the local processor or cores improve the file transfer performance with NVMe-over-Fabrics.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0