메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
심승보 (한국건설기술연구원)
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제20권 제4호
발행연도
2021.8
수록면
95 - 105 (11page)
DOI
https://doi.org/10.12815/kits.2021.20.4.95

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
도로 노면 파손 탐지는 쾌적한 주행 환경과 안전사고의 예방을 위해 필요하다. 도로 관리기관은 자동화 기술 기반의 검사 장비와 시스템을 활용하고 있다. 이러한 자동화 기술 중에서도 도로 노면의 파손을 탐지하는 기술은 중요한 역할을 수행한다. 최근 들어 딥러닝을 이용한기술에 대한 연구가 활발하게 진행 중이다. 이러한 딥러닝 기술 개발을 위해서는 도로 영상과라벨 영상이 필요하다. 하지만 라벨 영상을 확보하기 위해서는 많은 시간과 노동력이 요구된다. 본 논문에서는 이러한 문제를 해결하기 위하여 준지도 학습 기법 중 하나인 적대적 학습방법을 제안했다. 이를 구현하기 위해서 5,327장의 도로 영상과 1,327장의 라벨 영상을 사용하여 경량화 심층 신경망 모델을 학습했다. 그리고 이를 400장의 도로 영상으로 실험한 결과80.54%의 mean intersection over union과 77.85%의 F1 score를 갖는 모델을 개발하였다. 결과적으로 라벨 영상 없이 도로 영상만을 학습에 추가하여 인식 성능을 향상시킬 수 있는 기술을개발하였고, 향후 도로 노면 관리를 위한 기술로 활용되길 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0