메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제18권 제3호
발행연도
2019.1
수록면
106 - 118 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 들어 인공 지능을 이용한 영상 객체 인식에 대한 연구 및 개발이 활발하게 진행되고있다. 그 연장선상에서 도로 유지 및 관리 분야에도 관련 연구의 활용도가 크게 향상될 것으로기대된다. 그 중에서도 특히 도로 노면 파손 객체 인식 (Object Detection) 을 위한 인공 지능모델이 지속적으로 개발되고 있다. 이러한 객체 인식 알고리즘을 개발하려면 우선적으로 특징지도를 생성하는 Backbone Network가 반드시 필요한데, 본 논문에서는 이를 선정하는 방법을제안하고자 한다. 이를 위해 6,000여 장의 도로 노면 파손 영상 데이터를 확보하고, 근래에 많이 사용되는 4종류의 심층 신경망을 활용하여 성능을 비교한다. 3가지의 성능 평가 방법을 적용하여 심층 신경망의 특징을 분석하고 최적의 심층 신경망을 결정한다. 또한 하이퍼 파라미터의 최적 조율을 통해 성능을 향상시키고, 최종적으로 도로 노면 파손 영상 분류를 위하여85.9%의 정확도로 수행이 가능한 경량화된 Backbone Network용 심층 신경망을 제안한다.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0