메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
심승보 (한국건설기술연구원) 최상일 (한국건설기술연구원) 공석민 (한국건설기술연구원) 이성원 (한국건설기술연구원)
저널정보
한국터널지하공간학회 한국터널지하공간학회 논문집 한국터널지하공간학회 논문집 제22권 제5호
발행연도
2020.1
수록면
515 - 528 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
통상적으로 콘크리트 지하 구조물은 수십 년 이상 사용할 수 있도록 설계되지만 최근 들어 구조물 중 상당수가 당초의 기대 수명에 근접하고 있는 실정이다. 그 결과 구조물 고유의 기능이 상실되고 다양한 문제가 야기될 수 있어 신속한 점검과 보수가 요구되고 있다. 이를 위해 지금까지는 지하 구조물 유지관리를 위하여 인력 기반의 점검과 보수가 진행되었으나 최근에는 인공지능과 영상 기술의 융합을 통한 객관적인 점검 기술 개발이 활발하게 이루어지고 있다. 특히 딥러닝을 활용한 영상 인식 기술을 적용하여 지도학습 기반의 콘크리트 균열 탐지 알고리즘 개발에 관한 연구가 다양하게 진행되고있다. 이러한 연구들은 대부분 지도학습 형태 영상 인식 기술로 많은 양의 데이터를 바탕으로 개발이 되는데, 그 중에도 많은 수의 라벨 영상(Label image)이 요구된다. 이를 확보하기 위해서는 현실적으로 많은 시간과 노동력이 필요한 실정이다. 본 논문에서는 이와 같은 문제를 개선하고자 적대적 학습 기법을 적용하여 균열 영역 탐지 정확도를 평균적으로 0.25% 향상시키는 방법을 기술하고자 한다. 이 적대적 학습은 분할(Segmentation) 신경망과 판별자(Discriminator) 신경망으로 구성되어 있고, 가상의 라벨 영상을 경쟁적인 구조로 생성하여 인식 성능을 높이는 알고리즘이다. 본 논문에서는 이 같은 방법을 활용하여 효율적인 심층 신경망 학습 방법을 제시하였고, 향후에 정확한 균열 탐지에 활용될 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0