메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최은영 (경북전문대학교) 안희정 (경북전문대학교 식품산업연구소)
저널정보
한국식품영양학회 한국식품영양학회지 한국식품영양학회지 제30권 제5호
발행연도
2017.10
수록면
1,068 - 1,079 (12page)
DOI
10.9799/ksfan.2017.30.5.1068

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was applied to the PCA (Primary Components Analysis) for the sixteen table setting at the 2017 Yeongju local food contest. In this contest, we have developed a seonbibansang and a temple one-dish meal. As a result of the correlation analysis, the applicability and composition were 0.7980, harmony and taste were 0.7747 and easiness and composition were 0.7435. In the Primary Component Y1, all the variables X1…X10 mean that the quality of the food had positive values greater than zero. The second Primary Component Y2 has a large positive value while X4, X5, X6, X7, X9 have negative values. Y2 is a value representing the sanitation variable, and can be considered a traditional and characteristic table setting natural to the native food in Yeongju. In addition, we developed an-hyangbansang and seonmyoaecheong food content by applying PCA factors (the elements of harmony, ease and sanitation). Table setting of an-hyangbansang provided energy 61.5%, protein 20.0% and fat 18.5% and seonmyoaecheong provided energy 62.7%, protein 15.4% and fat 22.2%. This satisfied the necessary amount of caloric nutrient intake that could be provided in a meal. Especially through story-telling, a modern interpretation - or rebranding - of local and traditional foods could make these traditional food products familiar to consumers currently. The developed table setting is felt to be conductive to the possible commercialization and introduction of traditional food into the mainstream commercial food service industry. Key words: primary components analysis, local foods, cultural heritage, buddhist cuisine

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0