메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전진규 (동국대학교) 최환석 (Univ. of Southern Mississippi) 이철우 (Ferris State University)
저널정보
한국파생상품학회 선물연구 선물연구 제25권 제2호
발행연도
2017.5
수록면
229 - 253 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Conventional time series modeling may not satisfy the model validity for short-period time series data. In this study, we apply the Kernel Variant Multi-Way Principal Component Analysis (KMPCA) to cluster multivariate time series data which havemultiple dimensions with auto- and cross-correlations. We then check whether this method works well in clustering those data by employing simulation for generalization. Two simulation studies with two different mean structures with nine combinations of auto- and cross-correlations were conducted. The results showed that KMPCA cluster two different mean structure groups over 90% success rates with an appropriate kernel function. We also found that when the mean structures are the same, auto-correlation, the number of temporal points, and the kernel function parameter have the statistically significant effects on clustering performance. The second and third order interaction effects with each of those factors also have effects on clustering success rates. Among the effects of the main factors, the kernel function parameter is the most critical factor to consider for obtaining better performance. A similar error structure may obstruct the clustering performance: strong cross-correlation, weak auto-correlation, and a larger number of temporal points. The paper also discussed some limitations of the KMPCA model and suggested directions for future research that could improve the model.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0