메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박지양 (한국교통안전공단) 정재환 (한국교통안전공단) 윤진수 (한국교통안전공단) 김성철 (THE IMC) 김지연 (THE IMC) 이호상 (한국교통안전공단) 류익희 (한국교통안전공단) 권영문 (한국교통안전공단)
저널정보
한국자동차안전학회 자동차안전학회지 자동차안전학회지 제14권 제1호
발행연도
2022.3
수록면
26 - 31 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Changwon City has the second highest accident rate with 79.6 according to the city bus accident rate. In fact, 250,000 people use the city bus a day in Changwon, The number of accidents is increasing gradually. In addition, a recent fire accident occurred in the engine room of a city bus (CNG) in Changwon, which has gradually expanded the public’s anxiety. In the case of business vehicles, the government conducts inspections with a short inspection cycle for the purpose of periodic safety inspections, etc., but it is not in the monitoring stage. In the case of city buses, the operation records are monitored using Digital Tacho Graph (DTG). As such, driving records, methods, etc. are continuously monitored, but inspections are conducted every six months to ascertain the safety and performance of automobiles. It is difficult to identify real-time information on automobile safety. Therefore, in this study, individual automobile management solutions are presented through machine learning techniques of inspection results based on driving records or habits by linking DTG data and Vehicle Inspection Management System (VIMS) data for city buses in Changwon from 2019 to 2020.

목차

ABSTRACT
1. 서론
2. 데이터 보유항목
3. 데이터 수집 및 표준화
4. 학습데이터셋 구축 및 예측모델구축
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-556-001309483