메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이진민 (서울과학기술대학교) 김태헌 (서울과학기술대학교) 이창희 (서울과학기술대학교) 이현진 (서울과학기술대학교) 송아람 (경북대학교) 한유경 (서울과학기술대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제38권 제6호
발행연도
2022.12
수록면
1,925 - 1,934 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
원격탐사 기술을 활용한 접근불능 지역에 대한 핵활동 모니터링은 핵 비확산을 위해 필수적이다. 최근에는 딥러닝을 이용하여 핵활동 관련 객체를 탐지하는 연구가 활발하게 수행되고 있으나, 고해상도 위성영상내 소형객체는 클래스 불균형 발생 빈도가 높다. 이로 인해 소형객체 탐지 성능이 저하되는 문제점이 존재한다. 이에 본 연구에서는 입력 데이터 내 핵활동 관련 소형객체의 비율이 딥러닝 모델 성능에 미치는 영향을 분석하여 탐지 정확도를 개선하기 위한 방안을 도출하고자 한다. 이를 위해 소형객체 비율이 상이한 6가지 학습자료를 구축하여 학습자료별로 U-Net 모델 학습을 진행하고, 다양한 종류의 소형객체가 포함된 test dataset을이용하여 학습된 U-Net 모델 간 정량적·정성적 비교평가를 수행하였다. 그 결과, 입력영상 내 객체 픽셀 비율을 조절하였을 때 핵활동 관련 소형객체를 효과적으로 탐지할 수 있는 것이 확인되었으며, 이를 통해 훈련 자료 내 객체 비율을 조정하여 딥러닝 모델 성능을 향상시킬 수 있을 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0