메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
예철수 (극동대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제39권 제2호
발행연도
2023.4
수록면
223 - 232 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
고해상도의 위성 영상을 이용하여 지표를 모니터링하기 위한 방법으로 분석 대상 객체의 색상을 이용하여 영상을 분류하는 방법이 널리 사용된다. 고해상도 위성영상에서는 도심 지역의 경우 건물, 도로 등과 같은 주요 객체들 이외에도 수목 등과 같은 식생 객체들도 빈번하게 나타난다. 도심 지역에 나타나는 식생 객체들의 색상은 건물, 도로, 그림자 등의 객체와 유사한 경우가 많으며, 이는 색상 정보에 기초하여 객체를 분류할 경우에 분류 성능이 저하되는 요인이 된다. 본 연구에서는 건물 등과 같은 다양한 색상을 가지는 객체뿐만 아니라 식생 객체도 정확하게 분류할 수 있는 기법을 제안한다. 제안하는 방법은 식생 객체 검출에 유용한 정규식생지수 영상을 RGB 영상과 함께 사용하고 객체 클래스를 서브 클래스로 세분화하여 분류한다. 서브 클래스분류 결과를 융합한 후에 영상 분할 결과와 결합하여 최종 분류 결과를 생성한다. 차세대중형위성1호 영상을이용한 실험에서 정규식생지수를 사용하지 않은 서브채널 분류 기법과 서브클래스 분류 기법의 overall accuracy가 각각 73.18%, 81.79%의 결과를 보인 반면, 정규식생지수와 서브클래스 분류를 함께 적용하여 제안한 방법은overall accuracy가 87.42%의 우수한 성능을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0