메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정동기 (서울시립대학교) 이임평 (서울시립대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제6호
발행연도
2021.12
수록면
1,573 - 1,587 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
드론 영상은 위성이나 항공 영상보다 공간 해상도가 수배 혹은 수십 배가 높은 초고해상도 영상이다. 따라서 드론 영상 기반의 원격탐사는 영상에서 추출하고자 하는 객체의 수준과 처리해야 하는 데이터의 양이 전통적인 원격탐사와 다른 양상을 보인다. 또한, 적용되는 딥러닝(deep learning) 모델의 특성에 따라 모델 훈련에사용되는 최적의 데이터의 축척과 크기가 달라질 수밖에 없다. 하지만 대부분 연구가 찾고자 하는 객체의 크기, 축척을 반영하는 영상의 공간 해상도, 영상의 크기 등을 고려하지 않고, 관성적으로 적용하고자 하는 모델에서 기존에 사용했던 데이터 명세를 그대로 적용하는 경우가 많다. 본 연구에서는 드론 영상의 공간 해상도, 영상 크기가 6가지 월동채소의 의미론적 분할(semantic segmentation) 딥러닝 모델의 정확도와 훈련 시간에 미치는 영향을 실험 통해 정량적으로 분석하였다. 실험 결과 6가지 월동채소 분할의 평균 정확도는 공간 해상도가 증가함에 따라 증가하지만, 개별 작물에 따라 증가율과 수렴하는 구간이 다르고, 동일 해상도에서 영상의크기에 따라 정확도와 시간에 큰 차이가 있음을 발견하였다. 특히 각 작물에 따라 최적의 해상도와 영상의 크기가 다름을 알 수 있었다. 연구성과는 향후 드론 영상 데이터를 이용한 월동채소 분할 모델을 개발할 때, 드론영상의 촬영과 학습 데이터의 제작 효율성 확보를 위한 자료로 활용할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0