메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김형우 (부경대학교) 김민호 (상명대학교) 이양원 (부경대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제38권 제5호
발행연도
2022.10
수록면
819 - 834 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
인공지능 기법들은 특히 영상분류(image classification), 객체탐지(object detection), 영상분할(imagesegmentation)에 효과적으로 사용되고 있다. 특히, 딥러닝(deep learning)은 최근 컴퓨팅 파워의 증대와 함께 깊고 두터운 네트워크 구성이 가능해지고 보다 효율적인 활성함수(activation function)와 옵티마이저(optimizer)를활용한 특징맵(feature map)의 생성을 통해 상당히 높은 정확도를 도출할 수 있다. 본고에서는 최근 다양한 원격탐사 분야에서 활용성이 확대되고 있는 딥러닝 영상인식 기법인 Convolutional Neural Network (CNN) 기반모델 및 Transformer 기반 모델에 대한 기술동향 및 사례연구를 검토하고, 우리나라에서 이들 기법의 활용방안및 발전방향 등을 제시하고자 한다. 향후 원격탐사 기반의 재난 상황 대응을 위해서는 위성영상의 적시성 확보와 실시간 딥러닝 처리, 그리고 위성, 드론 및 Closed-circuit Television (CCTV) 영상이 함께 활용되는 영상 빅데이터 플랫폼도 개발되어야 할 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0