메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Rappold Brian A. (Laboratory Corporation of America Holdings Research Triangle Park NC USA)
저널정보
대한진단검사의학회 Annals of Laboratory Medicine Annals of Laboratory Medicine 제42권 제5호
발행연도
2022.9
수록면
531 - 557 (27page)
DOI
10.3343/alm.2022.42.5.531

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is increasingly utilized in clinical laboratories because it has advantages in terms of specificity and sensitivity over other analytical technologies. These advantages come with additional responsibilities and challenges given that many assays and platforms are not provided to laboratories as a single kit or device. The skills, staff, and assays used in LC-MS/MS are internally developed by the laboratory, with relatively few exceptions. Hence, a laboratory that deploys LC-MS/MS assays must be conscientious of the practices and procedures adopted to overcome the challenges associated with the technology. This review discusses the post-development landscape of LC-MS/MS assays, including validation, quality assurance, operations, and troubleshooting. The content knowledge of LC-MS/MS users is quite broad and deep and spans multiple scientific fields, including biology, clinical chemistry, chromatography, engineering, and MS. However, there are no formal academic programs or specific literature to train laboratory staff on the fundamentals of LC-MS/MS beyond the reports on method development. Therefore, depending on their experience level, some readers may be familiar with aspects of the laboratory practices described herein, while others may be not. This review endeavors to assemble aspects of LC-MS/MS operations in the clinical laboratory to provide a framework for the thoughtful development and execution of LC-MS/MS applications.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0