메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Claire NICODEME (Saint Denis)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
373 - 377 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Human wish for autonomy in vehicles goes back to the 15<SUP>th</SUP> century and has been the subject of numerous research. In the past decade in particular, the rise of Artificial Intelligence & Deep Learning has provided new efficient tools for self-driving transportation systems. Most of existing works focus on cars, while trains have attracted less attention. However, railway is the most interesting transportation mode in the optic of sustainability. Given the high number of passengers it may carry, an autonomous train must analyze even more accurately its environment. It must also recognize everything happening in its cars to ensure passengers security. The total absence of railway agents on-board fully autonomous trains brings requirements for a monitoring system. It would include sets of sensors for the acquisition, algorithms for analysis and telecommunication network to transfer either the data or its extracted information. Cameras are the first sensor that comes in mind as they would furnish images of the scenes, copying human vision. In addition, other signals such as sound and air composition may supply complementary or new information. The paper offers a review of sensors and their use through the scope of event detection, in the context of public transportation.

목차

Abstract
1. INTRODUCTION
2. COLLECTION OF EVENTS’ LIST
3. SENSORS AND PROCESSING SUMMARY
4. IMPACTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0