메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송현덕 (한국해양대학교) 장명희 (한국해양대학교)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제22권 제6호
발행연도
2022.12
수록면
203 - 228 (26page)
DOI
10.37272/JIECR.2022.12.22.6.203

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study was conducted to find out whether port logistics workers acceptance and acceptance resistance of digital transformation technologies such as e-platform, big data, Internet of Things, block chain, artificial intelligence, autonomous vessels, and cyber security technologies. This researcher empirically studied how acceptance resistance, the attitude of consumers not to accept digital transformation technology, affects personal acceptance and social acceptance using the innovation diffusion theory, extended theory of planned behavior, and innovation resistance theory. As a result of the empirical analysis, it was found that variables such as self-efficacy, involvement, complexity, and technological innovation had a negative effect on acceptance resistance. Acceptance resistance was also found to have a negative effect on personal and social acceptance of digital transformation technology. When the behavioral characteristics and innovation characteristics factors recognized by port logistics workers for digital Transformation technology affect acceptance, acceptance resistance, which plays a mediating role, was able to confirm the mediating effect in other factors except the relative advantage. The results of this study are expected to provide a basis for promoting the success of digital transformation in the field of port logistics through resistance management by presenting resistance factors that occur in the process of accepting digital transformation technology by port logistics workers.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구모형 및 가설
Ⅵ. 실증 분석 및 결과
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-323-000335544