메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황철현 (한양여자대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제11호
발행연도
2022.11
수록면
1,608 - 1,614 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 학생 수 감소로 인한 대학 간 경쟁이 심화되면서 성과부진학생을 조기에 예측하고, 중도이탈을 예방하기 위해 다양한 노력을 기울이는 것은 대학의 필수 업무로 인식되고 있다. 이를 위해서는 학생의 성과를 정밀하게 예측하는 우수한 성능의 모델이 필수적이다. 본 논문은 성과부진학생을 식별하기 위한 분류 예측 모델에서 이상 데이터를 제거하거나 증폭을 통해 예측 성능을 향상시키는 방법에 대해 제안한다. 기존 이상데이터 처리방법은 주로 데이터를 삭제하거나 무시하는데 집중되었지만 이 논문에서는 잡음과 변화지표를 구분하는 기준을 제시하고, 데이터를 삭제하거나 증폭함으로써 예측 모델의 성능을 높이는데 기여한다. 제안 방법의 검증을 위해 공개된 학습 성과 데이터를 활용한 실험에서 기존 방법에 비해 제안방법이 분류 성능을 향상시킬 수 있는 다수의 사례를 발견할 수 있었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 이상 데이터 처리방법
Ⅳ. 실험 및 결과해석
Ⅴ. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0