메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이낙원 (한국과학기술원) 류덕산 (전북대학교) 조일훈 (LIG Nex1) 송재근 (ADD) 백종문 (KAIST)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.49 No.6
발행연도
2022.6
수록면
443 - 458 (16page)
DOI
10.5626/JOK.2022.49.6.443

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다양한 유형의 실패 데이터에 대해서 모두 최적의 성능을 보이는 모델은 없다는 문제를 해결하기 위해서 모델 선택 방법과 데이터-기반 신뢰도 예측 방법이 제안되었다. 그러나 모델 선택 방법은 여전히 모든 유형의 실패 데이터에 대해서 최적의 모델을 선택할 수는 없으며 데이터-기반 방법은 예측 결과로부터 얻을 수 있는 신뢰도 관련 척도가 한정적인 문제가 있다. 본 연구의 목표는 신뢰도를 정확하게 예측하면서도 다양한 신뢰도 관련 척도를 얻는 것이다. 이를 위해 데이터-기반 신뢰도 예측 결과를 이용하여 모델을 선택하는 기법을 제안한다. 이 기법은 과거 실패 데이터로부터 모델 선택 방법과 데이터-기반 방법 중 어떤 방법을 사용할지 선정한다. 데이터-기반 방법을 선정하면 데이터-기반 방법으로 예측한 값으로 증강된 데이터를 만들고 가장 적합한 신뢰도 모델을 선택한다. 제안 기법의 예측 성능을 평가한 결과 예측 오차의 중위 값이 비교대상 기법들 중 가장 정확한 기법에 비해 21% 작은 것을 확인했다.

목차

요약
Abstract
1. 서론
2. 배경지식 및 관련 연구
3. 데이터-기반 신뢰도 예측을 이용한 모델 선택 기법
4. 성능 평가 실험
5. 사례 연구
6. 결론 및 향후 연구
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0