메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임소영 (한국원자력연구원) 서호건 (한국원자력연구원) 유용균 (한국원자력연구원)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제28권 제11호
발행연도
2022.11
수록면
973 - 980 (8page)
DOI
10.5302/J.ICROS.2022.22.0146

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Several fields employ a method for estimating the source position of a multichannel time series signal received via multiple sensors. This requires an algorithm to estimate the position from the propagation time difference between the signals. Moreover, the algorithm needs to be modified according to the geometric condition of the propagation space, propagation speed in the medium, and noise caused by the reflector. However, since it is difficult to supplement the algorithm to respond individually to various propagation conditions, the more complex the propagation conditions, the less precise the source localization. To overcome these limitations, this study proposes a reinforcement learning algorithm to estimate the source location using simulations that generate multi-channel timeseries signals from random locations, which are propagated through three-dimensional space and received by multiple sensors. The reinforcement learning model estimates the source position by inputting the difference between the target signals and the signals generated from the random position as well as moving the positions to a new expected source positions where the differences can be minimized. By repeating the movement of the expected source positions, if the changes are repeated within the allowable minimum value in which the position retains in a specific region, the corresponding position can be estimated to be the source position. The proposed reinforcement learning model uses 300 samples from seven sensor positions at a sampling rate of 0.5 kHz and a propagation speed of 5000 m/s in a space with dimension of 1000 mm width, 1000 mm length, and 1000 mm height. From estimation of 1000 random source positions with the condition, the error was less than 50 mm in 90% or more. Thus, by reconfiguring the simulation environment to conform to a new target situation and learning the model, source localization models can be developed.

목차

Abstract
I. 서론
II. 가상환경 및 강화학습 문제 정의
III. 강화학습 환경구성
IV. 강화학습 알고리즘
V. 결과 및 고찰
VI. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0