메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yao Wang (서울과학기술대학교) 하종은 (서울과학기술대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제28권 제10호
발행연도
2022.10
수록면
862 - 867 (6page)
DOI
10.5302/J.ICROS.2022.22.0107

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we explore the application of Vision transformer (ViT) to the scene text recognition task. As a popular research direction in computer vision, Scene text recognition enables computers to recognize or read the text in natural scenes, such as object labels, text descriptions, and road text signs. At present, the traditional convolutional neural network-based model has better performance. Still, in the face of complex backgrounds and irregular scene text pictures, the performance of the convolutional neural network-based model is challenging to improve in curved text, diverse fonts, distortions, etc. With the application of transformers in computer vision, the model structure based on transformers has also significantly been developed. Although the current transformer-based model can obtain the performance of the model structure similar to CNN, it is currently in the early stage of application, and there is much room for research and improvement. We propose a multi-scale vertical rectangular patch model (MSVSTR) for transformer-based feature extractor to be more suitable for text images. By only arranging the patches in a single direction, when the image is cropped through the patch, it can be more suitable for the distribution form of the text in the text image. At the same time, to be suitable for different numbers of characters in other texts and more robust feature extraction, vertical rectangular patches of different scales are applied to crop the image. Our structure performs better through various ablation experiments than similar transformer-based STR models. At the same time, experiments show that our structure can perform seven benchmarks well.

목차

Abstract
I. 서론
II. 관련 연구
III. 제안 방법
IV. 실험 결과
V. 결론
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0