메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
SooHyun Park (Chung-Ang University) Jongwon Choi (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소MINT Moving Image & Technology (MINT) MINT: Moving Image & Technology, Vol.2, No.3
발행연도
2022.8
수록면
18 - 23 (6page)
DOI
10.15323/mint.2022.8.2.3.18

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the field of video representation, the self-supervised learning method was efficiently applied to the pre-training domain to downstream tasks using large and many unlabeled datasets. The basic approaches are typically based on a pre-text task method and a contrastive learning method. First, in a pre-text task method, a user defines a new problem and uses it as a proxy for self-supervised learning. Second, contrastive learning is a method of predicting the relationship between instances by assuming that feature values extracted through a certain model will have similar information between instances. According to the recent popularity of unsupervised learning, various self-supervised methods as well as the above methods are used in the field of video representation learning. Effective video representation learning is performed by fusing the multimodality advantages of video and the features of audio-visual information with various deep learning techniques. In this paper, recent representative methods of self-supervised video representation learning are summarized and described. Additionally, we provide a brief overview of how to utilize multimodality (audio-visual) information, which is the strength of the video.

목차

Abstract
1. Introduction
2. Self-Supervised Learning Method
3. Multi-Modal (Audio-Visual) Method
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-688-001637847