메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임주원 (서울대학교병원)
저널정보
한국항공우주의학협회 항공우주의학회지 항공우주의학 제32권 제1호(통권 제97호)
발행연도
2022.4
수록면
16 - 21 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: The objective of this study was to develop a model for predicting the positivity of hepatitis A antibody based on nationwide health information using a machine learning technique.
Methods: We used a data set that included the records of 4,626 samples. the data was randomly divided into a training set 80% (3,701) and validation set 20% (925). Customized sequential convolutional neural network (CNN) model was used to predict the positivity of hepatitis A antibody. The loss and accuracy of this model was calculated.
Results: This model has 12-input and 2-concatenate and 3-dense layers. The total parameters of this model were 1,779. The accuracy quickly reached to over 85% validation accuracy in 50 epochs. The train loss, train accuracy, validation loss and validation accuracy of this model were 25.4%, 89.5%, 29.0%, and 87.2%, respectively.
Conclusion: The model derived from the sequential CNN model exhibited a high level of accuracy. This model is a useful tool for predicting the positivity of hepatitis A antibody.

목차

Ⅰ. 서론
Ⅱ. 연구대상 및 방법
Ⅲ. 결과
Ⅳ. 고찰
Ⅴ. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-558-001689795