메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김현우 (양산부산대학교병원) 박의환 (한남대학교 경상대학 경제학과) 김대진 (경복대학교) 문수진 (양산부산대학교병원 이비인후과학교실) 김지영 (부산대학교 의과대학 신경과학교실) 이가현 (부산대학교병원) 조재욱 (부산대학교)
저널정보
대한수면연구학회 Journal of sleep medicine Journal of sleep medicine Vol.17 No.2
발행연도
2020.1
수록면
128 - 137 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: The objective of this study was to develop models for predicting obstructive sleep apnea (OSA) based on easily obtainable clinical information of patients using various machine learning techniques. Methods: We used a data set that included the records of 1,368 patients, in which 1,074 patients were male (78.5 %), and 294 patients were female (21.5 %). We randomly divided the data into a training set (1,000) and test set (368). Five machine learning methods, i.e., support vector machine model, lasso logit model, naïve bayes, discriminant analysis, and K-nearest neighbor (KNN), with a 10-cross fold technique were used with the proposed model to predict OSA. We evaluated the accuracy, sensitivity, specificity, and precision of each model for three thresholds [Apnea-Hypopnea Index (AHI)≥5, AHI≥15, and AHI≥30]. Results: Among the machine learning techniques, KNN showed the best results compared to the other techniques. The accuracy, sensitivity, specificity, and precision of OSA prediction were 87.0%, 91.0%, 74.4%, and 91.9%, respectively, based on AHI≥5. When the threshold of OSA was AHI≥15 or AHI≥30, KNN provided lower accuracy (79.6% each) and precision (79.0% and 68.7%), which were still higher than those of the other techniques. Conclusions: The model derived from the KNN technique exhibited the best performance based on its highest level of accuracy. We demonstrate that this model is a useful tool for predicting OSA.

목차

등록된 정보가 없습니다.

참고문헌 (44)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0