메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
홍성환 (고려대학교) 남지수 (고려대학교) 조석주 (고려대학교) 김승룡 (고려대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2022년도 대한전자공학회 하계종합학술대회 논문집
발행연도
2022.6
수록면
1,464 - 1,475 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Existing pipelines of semantic correspondence commonly include extracting high-level semantic features for the invariance against intra-class variations and background clutters. This architecture, however, inevitably results in a low- resolution matching field that additionally requires an ad-hoc interpolation process as a post processing for converting it into a high-resolution one, certainly limiting the overall performance of matching results. To overcome this, inspired by recent success of implicit neural representation, we present a novel method for semantic correspondence, called neural matching field(NeMF). However, complicacy and high dimensionality of a 4D matching field are the major hindrances. To address them, we propose a cost embedding network consisting of convolution and self-attention layers to process the coarse cost volume to obtain cost feature representation, which is used as a guidance for establishing high-precision matching field through the following fully-connected network. Although this may help to better structure the matching field, learning a high-dimensional matching field remains challenging mainly due to computational complexity, since a naïve exhaustive inference would require querying from all pixels in the 4D space to infer pixel-wise correspondences. To overcome this, in the training phase, we randomly sample matching candidates for learning the networks. In the inference phase, we propose a novel inference approach which iteratively performs PatchMatch-based inference and coordinate optimization at test time. With the proposed method, state-of-the-art performance is attained on several standard benchmarks for semantic correspondence.

목차

Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 예비
Ⅳ. 본론
Ⅴ. 구현
Ⅵ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-569-001550056