메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강동구 (NAONWORKS) 김지연 (Daejin University) 정종진 (Daejin University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제9호
발행연도
2022.9
수록면
1,286 - 1,292 (7page)
DOI
10.5370/KIEE.2022.71.9.1286

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we propose an extended ontology automatic construction framework based on multiple deep learning models as part of an effective analysis of story video content. Semi-automatic techniques using image processing techniques have been the mainstream for the existing ontology construction methods for moving pictures, but there is a problem that human intervention is required and the accuracy is low due to the limitations of image processing techniques. To overcome this, in this paper, we propose an auto mated method based on the deep learning scene graph generation technique. In particular, in the case of video content with a story, the relationship between characters is a very important factor in understanding the scene, so deep learning-based object relationship creation model, character identification model, and important area caption generation model are applied to extract objects and recognize their relationships. And design a framework that automatically builds a domain ontology dependent on the story through procedural fusion between each model and module function. In addition, the proposed framework suggests a method for efficiently processing system requirements and system resources through meta control in the condition that requires simultaneous operation of multiple deep learning models to analyze story video content. Through this, the proposed framework effectively identifies critical region captions and object relationships in a scene in story-telling video content, and executes three types of models simultaneously. Finally, we conduct an experiment to automatically build an ontology by applying the proposed framework to specific video content, and check the effectiveness of the proposed framework.

목차

Abstract
1. 서론
2. 본론
3. 실험 및 평가
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-560-001689128