메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sheng, Congyi (Kyung Hee University) Yang, Sung-Byung (Kyung Hee University)
저널정보
한국서비스경영학회 서비스경영학회지 서비스경영학회지 제23권 제2호
발행연도
2022.6
수록면
278 - 306 (29page)
DOI
10.15706/jksms.2022.23.2.012

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the COVID-19 pandemic, the growth speed of TikTok live commerce exponentially increases, and its potential seems unlimited. Although consumers’ (watchers’) impulse buying is considered one of the main success factors, the specific mechanism on how their impulse buying is influenced has not been clearly investigated. Therefore, based on the S-O-R framework, this study identifies influencer (i.e., attractiveness, expertise, and interactivity) and platform characteristics (i.e., guidance shopping, visibility, and metavoicing) as stimuli factors and examines their impacts on the likeliness of impulse buying (response) through flow (i.e., enjoyment and concentration) as organism factors in Chinese individual live commerce context using the TikTok platform. With survey responses from 324 Chinese consumers who have used TikTok live commerce, research hypotheses were tested using the structural equation modeling (SEM) technique. Research findings show that, with the exception for interactivity and metavoicing, most stimuli factors have an impact on enjoyment and concentration, and both flow-related experiences also influence consumers’ likeliness of impulse buying. This research would enrich the studies on live commerce and expand the S-O-R framework in the context of live commerce. It is expected that this study will provide many practical implications for managers as well.

목차

Abstract
I. Introduction
II. Literature Review
III. Research Model and Hypotheses
IV. Research Method
V. Data Analysis and Results
VI. Discussion and Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-324-001508722