메뉴 건너뛰기
Library Notice
Institutional Access
If you certify, you can access the articles for free.
Check out your institutions.
ex)Hankuk University, Nuri Motors
Log in Register Help KOR
Subject

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway
Recommendations
Search
Questions

논문 기본 정보

Type
Academic journal
Author
Cheol Park (Dong-eui University) Eun Ok Choi (Dong-eui University) Hyun Hwangbo (Dong-eui University) Hyesook Lee (Dong-eui University) Jin-Woo Jeong (Nakdonggang National Institute of Biological Resources) Min Ho Han (National Marine Biodiversity Institute of Korea) Sung-Kwon Moon (Chung-Ang University)
Journal
The Korean Nutrition Society Nutrition Research and Practice Vol.16 No.3 KCI Accredited Journals SCIE
Published
2022.6
Pages
330 - 343 (14page)

Usage

cover
📌
Topic
📖
Background
🔬
Method
🏆
Result
Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway
Ask AI
Recommendations
Search
Questions

Research history (6)

  • Are you curious about the follow-up research of this article?
  • You can check more advanced research results through related academic papers or academic presentations.
  • Check the research history of this article

Abstract· Keywords

Report Errors
BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells.
MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis.
RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability.
CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anticancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

Contents

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
REFERENCES

References (0)

Add References

Recommendations

It is an article recommended by DBpia according to the article similarity. Check out the related articles!

Related Authors

Frequently Viewed Together

Recently viewed articles

Comments(0)

0

Write first comments.

UCI(KEPA) : I410-ECN-0101-2022-594-001307776