메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이주호 (국방과학연구소)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제28권 제5호
발행연도
2022.5
수록면
459 - 467 (9page)
DOI
10.5302/J.ICROS.2022.22.0019

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The Submarine Free Running Model Test (FRMT) refers to a test using a submarine scale model with self-propulsion and remote control capability. The main purpose of the submarine FRMT is to predict the maneuverability of a full-scale vehicle, in addition to the possibility of providing high fidelity data on the maneuvering characteristics in various situations. In case the submarine FRMT was performed below a certain depth, the model would not be capable of receiving GPS or RF signals for remote control. Accordingly, an appropriate operational algorithm is required to autonomously carry out a given task. This paper presents the development results of the underwater integrated navigation and control algorithm for performing the submarine FRMT in an ocean engineering basin. In the ocean engineering basin, it is possible to exclude the influence of disturbance caused by waves and currents. However, it is essential to comprehensively consider collision avoidance and mission control within a limited area of operation. The navigation system is composed of an Inertial Navigation System (INS), a Doppler Velocity Logger (DVL), and a depth sensor. Moreover, for additional calibration, an underwater ultrasonic range sensor and the basin wall position information are utilized. Considering modeling uncertainties and a controller failure situation, a robust controller based on a sliding mode controller and a nonlinear disturbance observer was used. The simulated proposed algorithm was evaluated by analyzing and comparing it with conventional navigation and control methods.

목차

Abstract
I. 서론
II. 수중함 자유항주모형
III. 수중 복합항법 알고리듬
IV. 제어 알고리듬
V. 자유항주모형시험 시뮬레이션
VI. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-003-001314797