메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gwangnae Gil (Samsung electronics) Sola Woo (Samsung electronics)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.22 No.2
발행연도
2022.4
수록면
101 - 104 (4page)
DOI
10.5573/JSTS.2022.22.2.101

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this article, we propose a prediction methodology for next-generation device characteristics for process design kit (PDK) models that utilize various machine learning algorithms to achieve high accuracy and reduction of development turn-around time (TAT). The Berkeley short-channel IGFET model (BSIM) is used for generating datasets, while n-channel MOSFET compact model is used for peripheral circuits in dynamic random-access memory (DRAM) technology. Datasets for training comprise device characteristics that use compact models in present-generation products. In addition, a compact model of next-generation products is used for validating datasets. We demonstrate that our prediction methodology using random forest regression provides high accuracy of less than 0.7% RMSE and reduces development TAT.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. DATA GENERATION AND MACHINE LEARNING ALGORITHM
Ⅲ. RESULT AND DISCUSSION
Ⅳ. CONCLUSION
REFERENCES

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-569-001135953