메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이용택 (고려대학교) 김두형 (고려대학교) 신우석 (고려대학교) 김창기 (한국에너지기술연구원) 김현구 (한국에너지기술연구원) 한성원 (고려대학교)
저널정보
대한산업공학회 대한산업공학회지 대한산업공학회지 제47권 제5호
발행연도
2021.10
수록면
444 - 458 (15page)
DOI
10.7232/JKIIE.2021.47.5.444

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The amount of new renewable energy generation is increasing worldwide every year. Among many new renewable energy sources, solar energy generation using solar energy accounts for the highest proportion of new renewable energy generation. There is a variation in power production because solar power generation is more affected by climate conditions compared to power generation using crude oil or oil. In order to accurately predict solar energy generation dependent on climate variables, this study compares the performance of machine learning-based solar power generation prediction models using weather forecast data from the current forecast technology, Numeric Weather Prediction (NWP). In this study, we experimented on two NWP types, and 7 machine learning models depending on 21 photovoltaic(pv) power stations. Based on results, we select the model with the lowest statistical indicators nMAE(%) by region as the optimal model for the region. Finally, experimental results show that the 7-Block ANN model devised in this study is better than conventional machine learning models.

목차

1. 서론
2. 선행 연구
3. 데이터 전처리 및 평가 지표
4. 태양광 발전량 예측 모델
5. 하이퍼파라미터 탐색 및 실험 결과
6. 결론 및 향후 과제
참고문헌

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0