메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
남충현 (한국기술교육대학교) 장경식 (한국기술교육대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제1호
발행연도
2022.1
수록면
24 - 29 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
정보 추출 및 질의응답 시스템 등 다양한 자연어 처리 분야에서 사용되는 의미역 결정은 주어진 문장과 서술어에 대해 서술어와 연관성 있는 논항들의 관계를 파악하는 작업이다. 입력으로 사용되는 서술어는 형태소 분석과 같은 어휘적 분석 결과를 이용하여 추출하지만, 한국어 특성상 문장의 의미에 따라 다양한 패턴을 가질 수 있기 때문에 모든 언어학적 패턴을 만들 수 없다는 문제점이 있다. 본 논문에서는 사전에 언어학적 패턴을 정의하지 않고 신경망 모델과 사전 학습된 임베딩 모델 및 형태소 자질을 추가한 한국어 서술어를 인식하는 방법을 제안한다. 실험은 모델의 변경 가능한 파라미터에 대한 성능 비교, 임베딩 모델과 형태소 자질의 사용 유무에 따른 성능 비교를 하였으며, 그 결과 제안한 신경망 모델이 92.63%의 성능을 보였음을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 서술어 인식 신경망 모델
Ⅳ. 실험 결과 및 분석
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0