메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
남충현 (한국기술교육대학교) 장경식 (한국기술교육대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제11호
발행연도
2021.11
수록면
1,505 - 1,511 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자연어 처리 분야 내 다양한 작업들에서 높은 성능을 보인 사전 학습된 모델은 대량의 말뭉치를 이용하여 문장들의 언어학적 패턴을 스스로 학습함으로써 입력 문장 내 각 토큰들을 적절한 특징 벡터로 표현할 수 있다는 장점을 갖고 있다. 이러한 사전 학습된 모델의 학습에 필요한 말뭉치를 구축하는 방법 중 웹 크롤러를 이용하여 수집한 경우 웹사이트에 존재하는 문장은 다양한 패턴을 갖고 있기 때문에 문장의 일부 또는 전체에 불필요한 단어가 포함되어 있을 수 있다. 본 논문에서는 웹으로부터 수집한 말뭉치에 대해 신경망 모델을 이용하여 불필요한 단어가 포함된 문장을 필터링하기 위한 데이터 셋 구축 방법에 대해 제안한다. 그 결과, 총 2,330개의 문장을 포함한 데이터 셋을 구축하였다. 또한 신경망 모델을 이용하여 구축한 데이터 셋을 학습시켜 성능을 평가하였으며, BERT 모델이 평가 데이터에 대해 93.75%의 정확도로 가장 높은 성능을 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 웹 말뭉치 수집 및 구축 방법
Ⅳ. 문장 필터링 데이터 셋 구축 방법
Ⅴ. 문장 필터링 데이터 셋 구축 결과
Ⅵ. 신경망 모델 성능 평가
Ⅶ. 결론
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-000031818