메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김완수 (울산대학교) 옥철영 (울산대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.12
발행연도
2016.12
수록면
1,376 - 1,384 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기계가 사람과 같이 문장을 처리하게 하려면 사람이 쓴 문장을 토대로 사람이 문장을 통해 발현하는 모든 문장의 표현 양상을 학습해 사람처럼 분석하고 처리할 수 있어야 한다. 이를 위해 기본적으로 처리되어야 할 부분은 언어학적인 정보처리이다. 언어학에서 통사론적으로 문장을 분석할 때 필요한 것이 문장을 성분별로 나눌 수 있고, 문장의 핵심인 용언을 중심으로 필수 논항을 찾아 해당 논항이 용언과 어떤 의미역 관계를 맺고 있는지를 파악할 수 있어야 한다. 본 연구에서는 국립국어원 표준국어대사전을 기반으로 구축한 격틀사전과 한국어 어휘 의미망에서 용언의 하위 범주를 자질로 구축한 CRF 모델을 적용하여 의미역을 결정하는 방법을 사용하였다. 문장의 어절, 용언, 격틀사전, 단어의 상위어 정보를 자질로 구축한 CRF 모델을 기반으로 하여 의미역을 자동으로 태깅하는 실험을 한 결과 정확률이 83.13%로 기존의 규칙 기반 방법을 사용한 의미역 태깅 결과의 정확률 81.2%보다 높은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 규칙 기반 의미역 결정 방법의 문제점
4. 기계 학습 기반 의미역 결정
5. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-001860043