메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Wenxing Liu (The University of Manchester) Hanlin Niu (The University of Manchester) Muhammad Nasiruddin Mahyuddin (Universiti Sains Malaysia) Guido Herrmann (The University of Manchester) Joaquin Carrasco (The University of Manchester)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
512 - 517 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Path planning problems have attracted much attention in robotic fields such as manipulators. In this paper, a model-free off-policy actor critic based deep reinforcement learning method is proposed to solve the classical path planning problem of a UR5 robot arm. Unlike standard path planning methods, the reward design of the proposed method contains smoothness reward, which assures smooth trajectory of the UR5 robot arm when accomplishing path planning tasks. Additionally, the proposed method does not rely on any model while the standard path planning method is model-based. The proposed method not only guarantees that the joint angle of the UR5 robotic arm lies within the allowable range each time when it reaches the random target point, but also ensures that the joint angle of the UR5 robotic arm is always within the allowable range during the entire episode of training. A standard path planning method was implemented in Robot Operating System (ROS) and the proposed method was applied in CoppeliaSim to validate the feasibility. It can be inferred from the experiment that the training with the proposed method is successful.

목차

Abstract
1. INTRODUCTION
2. THE PROPOSED METHOD
3. STANDARD PATH PLANNING METHOD
4. RESULTS AND ANALYSIS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0