메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Salim Lahmiri (École de Technologie Supérieure) Mounir Boukadoum (University of Quebec at Montreal)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.5 No.2
발행연도
2015.1
수록면
131 - 139 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose The purpose of this study is to show the effectiveness of a physiological signal denoising approach called EMDDWT- CLS. Methods This paper presents a new approach for signal denoising based on empirical mode decomposition (EMD), discrete wavelet transform (DWT) thresholding, and constrained least squares (CLS). In particular, the noisy signal is decomposed by empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) plus a residue. Then, each IMF is denoised by using the discrete wavelet transform (DWT) thresholding technique. Finally, the denoised signal is recovered by performing a weighted summation of the denoised IMFs except the residue. The weights are determined by estimating a constrained least squares coefficients; where, the sum of the coefficients is constrained to unity. We used human ECG and EEG signals, and also two EEG signals from left and right cortex of two healthy adult rats. Results The 36 experimental results show that the proposed EMD-DWT-CLS provides higher signal-to-noise ratio (SNR) and lower mean of squared errors (MSE) than the classical EMD-DWT model. Conclusions Based on comparison with classical EMDDWT model used in the literature, the proposed approach was found to be effective in human and animal physiological signals denoising.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0