메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
허승 (인천대학교)
저널정보
강원대학교 경영경제연구소 아태비즈니스연구 아태비즈니스연구 제11권 제4호
발행연도
2020.1
수록면
21 - 36 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose - This study analyzes the effect of sellers’ dishonesty on various market outcomes such as seller profit, buyer profit, and market welfare, through precisely measuring the level of sellers’ information disclosure and its economic impacts. As an explicit observation of sellers’ dishonesty is not easy in most other settings, this study is expected to suggest unique and meaningful implications on the effect of sellers’ incomplete information disclosure to researchers, managers, and policy makers. Design/methodology/approach - In order to precisely measure the level of sellers’ dishonesty under information asymmetry, this study analyzes the data from an incentive-based economic experiment using z-Tree software. This experimental method enables us to focus on the strategic interactions among participants, observe the integrity of seller’s information disclosure, and reproduce real market situations. Findings - The analysis of sellers’ dishonesty has provided the following important and counterintuitive findings about the reality of buyer-seller interactions under information asymmetry. First, sellers’ lies do not affect seller profit even when they are very intensive. Second, sellers’ dishonesty negatively affects buyer profit and the entire market welfare. Third, a seller’s quality claim has a positive effect on the seller profit only when a seller is being honest. Research implications or Originality - This study analyzes sellers’ dishonesty using incentive-based economic experiment using z-Tree software which provides a straightforward examination on dishonest behavior of sellers, that is not readily available with other types of observational or experimental data.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0