메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
송주현 (전남대학교) 김영국 (전남대학교)
저널정보
한국지질동맥경화학회(구 한국지질학회) 지질·동맥경화학회지 지질·동맥경화학회지 제9권 제3호
발행연도
2020.1
수록면
449 - 459 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: Ischemic stroke and myocardial infarction are 2 of the leading causes of mortality. Both conditions are caused by arterial occlusion, resulting in ischemic necrosis of the cells in the cortex and heart. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs longer than 200 nucleotides without protein-coding potential. Thousands of lncRNAs have been identified but their involvement in ischemic stroke and myocardial infarction has not been studied extensively. Therefore, this study aimed to identify the role of lncRNAs, particularly those that are commonly altered in these two ischemic injuries. Methods: We combined diverse RNA sequencing data obtained from public databases and performed extensive bioinformatics analyses to determine reliable lncRNAs commonly identified from these datasets. Using sequence analysis, we also detected the lncRNAs that may act as microRNA (miRNA) regulators. Results: We found several altered lncRNAs that were common in ischemic stroke and myocardial infarction models. Some of these lncRNAs, including zinc finger NFX1-type containing 1 antisense RNA 1 and small nucleolar RNA host gene 1, were previously reported to be involved in the pathogenesis of each of these models. Interestingly, several lncRNAs had binding sites for miRNAs that were previously reported to be involved in the hypoxic response, suggesting the possible role of these lncRNAs as regulators in ischemic responses. Conclusion: The lncRNAs identified in this study will be useful in determining the regulatory networks in ischemic stroke and myocardial infarction and in identifying potential specific markers for each of these ischemic diseases.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0