메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최수만 (연세대학교 투자정보공학협동과정) 전동화 (맥쿼리투자신탁) 오경주 (연세대학교)
저널정보
한국지식경영학회 지식경영연구 지식경영연구 제21권 제3호
발행연도
2020.1
수록면
229 - 247 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
지식경영 분야의 P2P금융 플랫폼의 성장속에서 빅데이터 및 머신러닝(Machine Learning) 기술을 보유한 회사만이 치열한 경쟁 속에서 생존할 가능성이 높을 것으로 예상된다. 그럼에도 불구하고 관련 서비스를 제공하는 온라인 P2P대출플랫폼 업체들은 투자자와 대출을 신청하는 중개자로서의 역할을 수행할 뿐이며 투자와 관련된 위험은 모두 투자자에게귀속시키고 있다. 이러한 이유로, 투자자 입장에서는 투자상품의 안전성을 확인할 수 있는 유일한 방법이 신문이나 온라인 웹사이트를 통한 P2P대출 플랫폼 업체의 평판에만 의존할 수 밖에 없는 실정이다. 또한, 한국의 P2P대출 플랫폼 업체들이 대출자의 개별 신용분석을 체계적으로 실시하여 연체율 등의 시계열 정보를 정확히 파악하기에는 시간적, 경제적여건이 매우 열악한 상황이다. 그러나, 최근 몇몇 P2P대출 플랫폼 업체들이 업체별 대출자 신용분석에 대한 역량을 가장중요한 영업자산으로 인식함으로써 빅데이터 및 머신러닝 기술을 바탕으로 인공지능(AI)에 기반한 새로운 신용평가 시스템을 구축하고 시행에 들어가고 있음은 매우 긍정적으로 평가된다. 따라서, 본 연구에서는 신용대출 시장에 주력하고있으며 인공지능 활용으로 잘 알려진 상위 3개 업체를 대상으로 사례분석 방식을 통해 인공지능을 활용한 대출자 신용분석 절차 및 사용하는 정보 데이터의 종류 등을 분석하고자 한다. 이를 통하여 현 상황에서 P2P 플랫폼 업체들의 인공지능을 통한 신용분석 기법을 이해하고 현 시점에서 국내 인공지능을 활용한 신용분석 방식의 한계점과 개선방안 등을함께 고찰하고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0