메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이만형 (한국교원대학교) 유선아 (한국교원대학교)
저널정보
한국과학교육학회 한국과학교육학회지 한국과학교육학회지 제40권 제3호
발행연도
2020.1
수록면
321 - 336 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 실제 교실에서 이루어진 학생의 과학 논증과정을 기계 학습을 활용한 자동 채점에 적용함으로써, 논증 자동 채점의 가능성및 개선 방향을 탐색한다. 분자 구조에 대한 고등학생의 과학 논증 수업 중 발생한 2,605개의 모든 발화를 대상으로 연구를 진행하였다. 지도 학습을 위해 5가지의 논증 요소로 발화를 분류하였고, 분류된 발화를 대상으로 텍스트 전처리를 수행하였다. 전처리된 학생 발화를 활용하여 서포트 벡터 머신, 의사결정나무, 랜덤 포레스트, 인공신경 망의 기계 학습 방법으로 자동 채점 모델을 구성하였다. 불용어 처리가 되지 않은 학생 발화를 활용한 자동 채점의 결과 랜덤 포레스트의 정확도는 65.96%, kappa는 0.5298의 유미한 결과를 얻었다. 불용어 처리를 수행한 학생 발화를 활용한 새로운 채점 모델의 결과 채점의 정확도가 크게 변화하지 않음에도 논증 발화 중 과학 용어 및 논증 요소의 담화표지가 채점 모델의 분류 기준이 되는 결과를 얻었다. 또한 인간 전문가의 논증 채점 과정을 분석하여 얻어진 전문가 형태 소를 자동 채점 모델에 생성 규칙 알고리즘으로 적용하였다. 그 결과 의사결정나무에서 반박에 대한 재현율(recall)이 21.74% 증가하였다. 이에 본 연구 결과는 과학 교육 연구에서 기계 학습 및 논증에 대한 자동 채점의 활용 가능성과 연구 방향성을 제안하였다.

목차

등록된 정보가 없습니다.

참고문헌 (62)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0