메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장혜수 (계명대학교) 여은아 (계명대학교)
저널정보
복식문화학회 복식문화연구 복식문화연구 제28권 제4호
발행연도
2020.1
수록면
446 - 462 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The objectives of this study are to explore the information source, assessment, and preferred styles of 3D virtual influencers(VI), to investigate the expected impact of advertisements with 3D VIs on brands, and to explore ways of expanding the use of 3D VIs. In-depth interviews with 40 males and females in their 20s and 30s were conducted and qualitative data were analyzed. The study results are summarized as follows. First, the information source of the 3D VI was SNS, acquaintances, and broadcasting. Second, 3D VIs were considered positively due to their attractive appearance, wide utilization, innovative use, freshness, separation from private identity, and time and cost savings, while considered negatively due to their unrealistic appearance and antipathy against replacing a person’s role. Third, the preferred appearance styles of the 3D VI differed according to the level of virtuality although the majority of interviewees preferred similar looks to real people with low virtuality. Fourth, diverse image qualities such as innovative, differentiated, trendy, high-value, professional, and future-oriented were considered as transferred to the brand advertised by 3D VIs. Fifth, advertisements with 3D VIs may help build positive perceptions of advertised brands that may lead to purchase behaviors for some consumers. Lastly, to expand the use of 3D VIs, the specific advantages of virtual models should be maximized with consideration of how to implement a variety of body types and images of models. Findings present an important foundation to generate strategies to better apply 3D VIs to the fashion market.

목차

등록된 정보가 없습니다.

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0