메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이한열 (서울대학교) 정재형 (서울대학교) 박찬국 (서울대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제27권 제11호
발행연도
2021.11
수록면
794 - 800 (7page)
DOI
10.5302/J.ICROS.2021.21.0127

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a new method that classifies the features in a visual-inertial navigation system. The far features provide inaccurate information on the position and velocity of a moving vehicle, and thus, the information provided by the far features should be used for attitude estimation without recovering the feature depths. In contrast, the information obtained from the near features can be used to obtain a reliable depth estimate because of the large parallax in the image plane. However, the criterion for labeling the features as near or far features is ambiguous. Previously, various geometric classification methods based on a stereo camera and measurement uncertainties have been reported. Herein, we present a criterion based on the geometric method using the MSCKF (Multi-State Constraint Kalman filter ). Additionally, we define a new concept — depth uncertainty — as the criterion of feature classification in the MSCKF. Using this criterion, we can draw a limited range defined as the observable region. Implementation of this method can decrease the error caused by the low parallax of the feature. The proposed method is validated through simulations and experiments, showing a 12.7 % and 21.2 % decrease in the mean position error, respectively, using the far features classification.

목차

Abstract
Ⅰ. 서론
Ⅱ. 시스템 및 측정 모델
Ⅲ. 시뮬레이션 및 실험
Ⅳ. 결론
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-003-002142462