메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sunanda Das (Neotia Institute of Technology, Management and Science) Chi-Chang Chang (Chung-Shan Medical University) Asit Kumar Das (Indian Institute of Engineering Science and Technology) Arka Ghosh (Indian Institute of Engineering Science and Technology)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.11 No.4
발행연도
2017.12
수록면
130 - 141 (12page)
DOI
10.5626/JCSE.2017.11.4.130

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Feature selection is one of the most challenging problems of pattern recognition and data mining. In this paper, a feature selection algorithm based on an improved version of binary differential evolution is proposed. The method simultaneously optimizes two feature selection criteria, namely, set approximation accuracy of rough set theory and relational algebra based derived score, in order to select the most relevant feature subset from an entire feature set. Superiority of the proposed method over other state-of-the-art methods is confirmed by experimental results, which is conducted over seven publicly available benchmark datasets of different characteristics such as a low number of objects with a high number of features, and a high number of objects with a low number of features.

목차

Abstract
I. INTRODUCTION
II. THE DIFFERENTIAL EVOLUTIONPRELIMINARIES
III. DE BASED FEATURE SELECTION
IV. EXPERIMENTAL RESULTS
V. CONCLUSIONS
REFERENCES

참고문헌 (51)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001718562