메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Young Kook Kim (Soongsil University) Myung Ho Kim (Soongsil University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제10호(통권 제211호)
발행연도
2021.10
수록면
37 - 43 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
말소리의 음향 특징을 이용하여 화자에 대한 중요한 사회, 언어학적 정보를 얻을 수 있는데 그 중 한 가지 핵심 특징은 방언이다. 화자의 방언 사용은 컴퓨터와의 상호작용을 방해하는 주요 요소이다. 방언은 발화의 음소, 음절, 단어, 문장 및 구와 같이 다양한 수준에서 구분할 수 있지만 이를 하나하나 식별하여 방언을 구분하기는 어렵다. 이에 본 논문에서는 음성 데이터의 특성 중 MFCC만 사용하는 경량화된 한국어 방언 분류 모델을 제안한다. 한국인 대화 음성 데이터를 통해 MFCC 특징을 활용하는 최적의 방법을 연구하고, 8가지 머신 러닝 및 딥러닝 분류 모델에서 경기/서울, 강원, 충청, 전라, 경상 5개의 한국어 방언 분류 성능을 비교한다. MFCC를 정규화하는 방법으로 대부분의 분류 모델에서 성능을 향상시켰으며, MFCC를 정규화하기 전 분류 모델의 최고 성능과 비교하여 정확도는 1.07%, F1-score는 2.04% 향상된 성능을 기록하였다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Experiments
V. Conclusions
REFERENCES

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0