메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임용배 (한국전기안전공사) 김동우 (한국전기안전공사) 박원경 (홍익대학교) 이호경 (홍익대학교) 조성원 (홍익대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제28권 제2호
발행연도
2018.4
수록면
114 - 121 (8page)
DOI
10.5391/JKIIS.2018.28.2.114

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
4차 산업혁명 시대가 도래됨에 따라 재해예방 분야에서도 사물인터넷과 인공지능 기술의 도입이 진행되고 있다. 본 논문은 이와 같은 기술 환경변화에 따라 공동주택용 자율전기안전관리 기술에 음성인식 분야에서 주로 활용되는 MFCC 알고리즘과 전류 변화율을 이용한 옥내 전기회로의 이상상태를 판별하는 방법을 제시한다. CT를 이용하여 전류파형을 측정하고, MFCC와 변화율 계산을 통해 신호를 변환하여 역전파 신경회로망에 적용함으로써 개선된 정확도를 얻을 수 있다. 정상상태와 아크, 누전, 아크와 누전이 동시에 일어난 이상상태 4가지로 구분하여 판별하는 실험을 수행 한 결과 제안된 방법의 우수함을 확인할 수 있었다. 기존의 MFCC를 활용하여 이상상태를 판별할 경우 51.22%, 변화율만 채택할 경우 75.61%의 정확도를 얻을 수 있었고, 본 연구에서 제안한 방식인 MFCC와 변화율을 모두 사용할 경우, 80.49%로 정확도가 향상되었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 구현 및 실험결과
5. 결론 및 향후 연구
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001847403