메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조우진 (충남대학교) 김형식 (충남대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제31권 제4호
발행연도
2021.8
수록면
605 - 616 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
악성코드는 임의의 프로그램을 대상으로 정확하게 식별할 수 있어야 하지만, 분류 기법을 이용하는 기존 연구들은 제한된 샘플에만 적용할 수 있다는 한계가 있다. 본 논문은 임의의 프로그램으로부터 악성코드 패밀리를 탐지하고 분류하기 위해 API 호출 빈도를 이용하는 방법을 제안한다. 제안 방법은 특정 API에 대한 호출 빈도가 임계값을 넘는지 검사하는 규칙을 정의하고, 해당하는 규칙에 의한 비율 정보를 활용하여 특정 패밀리를 식별하는 것이다. 본 논문에서는 결정트리 알고리즘을 응용하여 학습셋으로부터 특정 패밀리를 가장 잘 식별할 수 있는 값으로 임계값을 결정하였다. 4,443개의 샘플을 이용해 학습셋과 시험셋을 나눠 성능을 측정한 결과 패밀리 탐지의 경우 85.1%의 정밀도와 91.3%의 재현율을 보이고, 분류의 경우 97.7%의 정밀도와 98.1%의 재현율을 보여 악성코드 패밀리를 효과적으로 식별할 수 있음을 확인하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 방법
Ⅳ. 실험
Ⅴ. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0